

 	
 Account
	Login

 	Account
	Home
	
 Products
 		Fonts
	MICR & OCR Fonts	MICR E13B

	MICR CMC7

	OCR-A & OCR-B

	Security

	Linear Fonts	Codabar

	Code 39

	Code 128

	Code 93

	GS1-128

	GS1 DataBar

	GS1 UPC EAN

	Interleaved 2 of 5

	USPS Intelligent Mail IMb

	2D Fonts	Aztec

	DataMatrix

	DotCode

	MaxiCode

	PDF417

	QR Code

	Bundled Fonts	GS1 Barcode Font Suites

	Premiere Font Package

	TrueType 1D Font Package

	Universal Barcode Font

	Universal 2D Barcode Font

	Font Encoders

		Components
	.NET Generator

	.NET Forms Control

	.NET Compact

	.NET Server Control

	ActiveX Control

	Java Barcode

	IIS Streaming

	SSRS SaaS

	SaaS Generator

		Native Generators
	Access

	ASPX Script

	Crystal Reports

	Excel

	FileMaker

	Google Sheets | Docs

	JavaScript

	Oracle Reports

	PHP Script

	SSRS

		Programs | Apps
	ASCII String Decoder

	Decoder Verifier App

	Excel Font Encoder

	Font Encoder App

	Image Generator

	ISBN Book Package

	Label Software

	QRCode Gen App

		Integration
	Crystal Reports

	FileMaker Pro

	JavaScript

	Microsoft Access

	Microsoft Excel

	Microsoft Dynamics

	Oracle BIP

	Oracle Reports

	Salesforce

	SSRS

	Streaming SaaS

	Barcode Scanners

		Barcode FAQ
	Font Installation

	1D Linear Barcodes

	2D Barcodes

	GS1 Barcodes

	USPS Postal Barcodes

	Reference Guides

	Royal Mail Mailmark

	Unique Device ID

 	Search
	Contact Us
	

	

 	

 Search

	Login

	Home
	Fonts
	2D Fonts
	PDF417

PDF417 Font & Encoder User Manual
	Installation & Overview
	Specifications

	Support
	PDF417 FAQ

Implementation Tutorials
	Windows Installation
	
Windows Font Encoder
	.NET
	.NET
Assembly
	.NET Forms Control
	C++ .H Header File
	COM DLL
	Crystal Reports
	

Excel Implementation with the XLS font
	
	
	FileMaker Font Encoder Object
	FileMaker Pro Plugin
	

Internet Explorer
	Java Class Files
	JavaScript Font Encoder
	VBA Module for Excel and
Access
	Microsoft Access
	Word Mail-Merge Tutorial
	Methods for MacroPDF417 and fontEncodeMacroPDF

	SSRS
	Reporting Services

Buy License
Support
Download Demo
Release Log

Overview & Features
PDF417 is a 2D barcode type comprised of a stacked linear barcode format used in a variety of applications such as driver's licenses, vehicle titles and registrations, and inventory management.
Installation

All 2D barcode fonts require a 2-step installation process. As a courtesy, a Windows installation file is included in the package that automates the font installation procedure and installs the Font Encoder App and examples for Microsoft Office and Crystal Reports. For all other operating systems and encoders, the 2-step process is recommended.
	Install the IDAutomation2D barcode font. Extract the files from the download and install the font according to the Font Installation Procedures.

	Install a Font Encoder. Font encoders convert the data that is to be encoded into a text string that will generate the correct symbol when combined with the barcode font. Popular user-licensed font encoders are included in the package; Developer licensed encoders are in a separate download file that is provided with all Developer License orders.

Implementation Options
If the included font and graphic encoders are not
supported in the application being used, there are a few other implementation
options available:
	Font Encoders may be used within an application that
is known to be compatible such as Microsoft Excel or Word to encode
the data into a special text string, which can then be moved to
an application that can combine the font with that text string to
create a readable PDF417 barcode.
	Source Code is supplied with the purchase of any
Developer License purchase and consists of about 1,200 lines of
code
using simple functions and arrays that may be easily converted
to another programming language.
	
	Barcode Label Software is a stand-alone application with VB
scripting support and database connectivity.

Installation for Windows

The Windows installation installs the following
components:
	
	PDF417 Encoder
	App Windows
	

IDAutomation 2D Font
	Crystal Reports UFL and
Font Formulas
	ActiveX Control and DLL

	

Signed ActiveX CAB Files
	
VBA Module
	Implementation examples

VBA Module for Excel and
Access

The VBA module is required when using a font encoder in VB 6, Excel, or Access, and is available in 2 forms:
	The IDAutomation_PDF417_Macro.bas
module accesses the ActiveX DLL for its encoder function. Created
in C++, the ActiveX DLL is faster than the native VBA code. However,
when distributing an application, the ActiveX DLL must be installed
and registered on each computer to operate properly.
	The IDAutomation_Native_PDF417_Macro.bas
module is the complete encoder function in VB form. It may be slower than accessing the ActiveX DLL, and the ApplyTilde feature is unavailable. However, when distributing an application, the ActiveX
DLL does not need to be distributed. This module is only supplied in the purchased version of the Font and Encoder Suite.

Importing the VBA
Module

	Extract the files provided with the product and run
the installation executable to install the required files
in the Application folder.
	Open the VB editor in Excel or Access:
Excel 2007: Add the Developer tab, if not already there. Right-click on the Office Button in the upper left corner
of the Excel screen and choose "Customize Quick Access
Toolbar". Click on "Popular" at the top of
the list on the left and then click "Show Developer
Tab in the Ribbon" and save. Now go to Developer
- Visual Basic - File - Import File
Excel
2010 and later: Add the Developer tab, if not already there.
Go to File - Options - Customize Ribbon, select "Developer"
under Main Tabs on the right-hand side, and click ok. Now
go to Developer - Visual Basic - File - Import File

	If importing the IDAutomation_PDF417_Macro.bas
module, select Tools - References - IDAutomation PDF417
Barcode and then click ok.
	In the VB editor, select File - Import File and
choose the module to import from the VBA folder. The native
IDAutomation_Native_PDF417_Macro.bas
module is only supplied in the purchased version
of the product.
	If Excel or Access is being used, close the VB editor
by selecting File - Close, then choose File -
Save.
	After the file has been imported, the
IDAutomation_PDF417
function may be called according to the chart below. The zero digit is the default for all parameters, which are optional and are used for automatic mode or a false setting.
The one digit is used for a true setting. The parameters of
the functions are defined in the API section of this manual.

	
IDAutomation_Native_PDF417_Macro.bas

	
IDAutomation_PDF417(DataToEncode As String, Optional
EccLevel As Integer, Optional ColumnSpecify As Integer,
Optional RowSpecify As Integer, Optional Truncate
As Integer, Optional ForceBinary As Integer) As
String	Access Example

=IDAutomation_PDF417([Test Data.data])
or
=IDAutomation_PDF417([Test Data.data],2,4,0,0,1)
	
IDAutomation_PDF417_Macro.bas

	
IDAutomation_PDF417(DataToEncode As String, Optional
EcLevel As Integer, Optional TotalColumns As Integer,
Optional TotalRows As Integer, Optional Truncated
As Integer, Optional PDFMode As Integer, Optional
ApplyTilde As Integer) As String	Example

=IDAutomation_PDF417([Test Data.data],2,4,0,0,0,0)

Microsoft Access Implementation
Using Font Encoders in Access

	Run the .exe file in the package and follow the steps
to install the product.
	Import the VBA module
into the Access database.
	Open an Access report in design mode.
	Add a text field to the report where the barcode will be positioned. Size the field appropriately so that it is large enough to display the barcode. Change the field's
font point size to 8.
	Right-click the text field and enter the function call as a formula in the control source property. For example:

=IDAutomation_PDF417([Test Data.data])

The following formula combines 2 fields into a single symbol
and inserts a tab function between them:

=IDAutomation_PDF417([Test Data.TextData] & Chr(9) & [Test Data.NumberData])

	Save the report and run it. A special data string should
appear in the text field, and this is the data that will
create a correct barcode when combined with the PDF417 Font.
	Open the report in design mode and select the
appropriate IDAutomation PDF417 font for the text field.
	Save the report and run it; a correct PDF417 barcode
symbol should be displayed in the text field.

How to Embed a Graphic PDF417 Encoder in Access
The

Native Barcode Generator for Access is an
object that lives in the Access report itself, thus eliminating
the need to install fonts or components such as ActiveX
Controls or plug-ins. This product is unavailable as part
of the PDF417 font and encoder packages and must be purchased
separately.

Microsoft Word Mail-Merge Implementation
PDF417 barcodes may be created in a Word mail merge if Excel is used
as the data source on Windows with the following procedure:
	Run the .exe file in the package and follow the steps to complete the installation.
	Import the VBA module into
the Excel spreadsheet that will be used as the data source.
	Place a title in each column of the spreadsheet on Row 1 that
will contain the data, and then import the data into the Excel spreadsheet.
	Select a blank column on Row 1, to the right of the last populated
column in the spreadsheet, and title it Barcode.
	Add a formula on Row 2 of the Barcode column that calls the function as a formula.
For example, the following formula
adds columns A and B to the barcode:

=IDAutomation_PDF417(A2&B2)

The following formula adds only column A to the barcode, with some
optional parameters:

=IDAutomation_PDF417(A2,3,2,0,0,0)

The following formula adds columns A, B, and C to the barcode and
separates them with a comma delimiter:

=IDAutomation_PDF417(A2&","&B2&","&C2)

	Highlight the cell with the formula in it and choose Edit
- Copy.
	Select the entire range of cells to paste this formula into the Barcode column and choose Edit - Paste.
	Follow the procedures in MS Word to add this spreadsheet as
the data source for the mail merge.
	Add the mail merge field of Barcode to place the barcode
in the document.
	Highlight the Ã‚Â«BarcodeÃ‚Â» merge field and select the IDAutomationPDF417
font.
	After the mail merge is performed, the barcodes should appear
in the merged documents.
	A working example is provided in the
Word Mail-Merge.doc file included
in the Windows install package.

Crystal Reports Integration

IDAutomation provides two different Crystal
Reports
font encoder
formulas within this package:
	The
Native
Font Formula is the recommended font encoder that is embedded in a
report. When
distributing a report with this implementation, no other components are required
except
the 2D font. The slower speed of generation may not be an issue when encoding less than 100 characters. The native formula is only provided in the licensed version.
	The UFL Font Formula accesses the Crystal UFL for the font encoder function. Created in C#, it is faster than the native formula. However, when distributing the report, the Windows installation executable file must also be installed to activate the UFL. Use the native formula if possible.

While not part of this package, IDAutomation provides two other Crystal
Reports implementations:
	When using Crystal 9 or greater, the
Native
Barcode Generator for Crystal Reports generates barcodes without any additional
fonts.
	When using Crystal Reports 11, Crystal Reports Enterprise 4, or later
versions, barcode images may
be streamed from a server with any of

IDAutomation's Streaming Products.

FileMaker Pro Plug-in

NOTE: The 2017 release of this product introduces a new

FileMaker Font Encoder Object that is cross-platform compatible and easier to use than the Plugin. The provided Plugin does not support FileMaker 64-bit on the Mac and will not work with FileMaker Go in iOS. IDAutomation suggests using
the font encoder object instead.
IDAutomation's 2D Barcode Font may be
easily integrated into
FileMaker using dynamic calculated fields without the use of scripts
with this FileMaker Plug-in. Encode up to 800 characters into a barcode,
which is ideal for creating barcodes on badges, especially when concatenating
multiple fields into a single barcode.

View step-by-step instructions about installing, registering, and using the
plug-in.
Native JavaScript Font Encoder
The Native JavaScript Font Encoder is a complete font encoder in
a single JavaScript file; no other components need to be installed to
create barcodes. This product is only provided in the purchased version
of the Font and Encoder Suite. Following are the steps for using the Native
JavaScript Font Encoder in HTML:
	Open the HTML document or application where the barcode will
be integrated.
	Add the following line at the top of the file just before the
</head> line to load the
appropriate JavaScript file:

<script language="JavaScript" src="IDAutomation_PDF417.js"></script>

	Add the barcode font as a class to be called in the document for the barcode
to appear just before the
</head> line:<style type="text/css">
.barcodefont1 {
font-family: "IDAutomation2D", "IDAutomation2D N5", "IDAutomation2D XLS", "IDAutomationPDF417n3", "IDAutomationPDF417n5", "IDAutomation2D S";
font-size: 200%;
}
</style>

	Add a script where the barcode is to appear in the HTML document
or text object, which is the file name without the ".js":

<script type="text/javascript">
document.write(IDAutomation_PDF417("www.IDAutomation.com"))
</script>

	Modify DataToEncode with what is to be encoded in the
barcode. This may be accomplished with a variable in JavaScript or a

dynamically generated webpage.

	
JavaScript Font
Encoder Parameters

	function IDAutomation_PDF417(DataToEncode,
ApplyTilde, EccLevel, ColumnSpecify, RowSpecify, Truncate, ForceBinary, XYRatio,
HTML, IDElement)
	Example

IDAutomation_PDF417("www.IDAutomation.com",null,null,null,null,null,null,null,null,'target');

/** Default values **/// Change these lines to set a new default value for parameters in the .js file
var IDAutomation_PDF417_default = {
'ApplyTilde': false, //When false does not processes tilde commands
'ForceBinary': false, //Forces binary encoding mode
'EccLevel': 0, //Error correction level 1-8; 0=automatic
'ColumnSpecify': 0,
'RowSpecify': 0,
'Truncate': false,
'XYRatio': 3,
'HTML': 1 //1=use
 for carriage returns | 0=use CR LF for carriage returns
}

Using the .NET DLL in .NET Applications
Implementing PDF417 barcodes in .NET applications may be accomplished with the .NET DLL font encoder or the .NET Forms Control graphic encoders.
Information about printing from the .NET Forms Control without using
the font is provided in the

.NET Forms Control User Manual.

.NET PDF417 Font Encoder Example
The following is an example using the font encoder to obtain the data that when printed with IDAutomation's PDF417 Font,
will create an accurate barcode. The source code for this font encoder example is provided in the package for testing and reference.

	In a .NET project, add a reference to the DLL and place
the import statement in the declarations section of the
project. For example:

Imports IDAutomation.Windows.Forms.PDF417Barcode

	Obtain the string of data that when printed with IDAutomation's
PDF417 Font, will create a correct barcode:

Dim NewBarcode As PDF417Barcode = New PDF417Barcode()
TextBox2.Text = NewBarcode.FontEncoder(TextBox1.Text, 0, 0, 0, False, PDF417Barcode.PDF417Modes.Text,True)

C# Example:

	In a .NET project, add a reference to the DLL and place the using statement
in the declarations section of the project. For example:using IDAutomation.Windows.Forms.PDF417Barcode;

	Obtain the string of data, that when printed with IDAutomation's PDF417 Font, will create a correct symbol:
PDF417Barcode NewBarcode = new PDF417Barcode();
textBox2.Text = NewBarcode.FontEncoder(textbox1.Text, 0, 0, 0, false, PDF417Barcode.PDF417Modes.Text, true)

Using the Java Class PDF417 Font Encoder
This section describes using the font encoder process to generate
PDF417 barcodes using Java. Implementation of PDF417 in Java as a graphic
encoder is described in the

Java User Manual.

Installing the Java Encoder Class Library
Copy the PDF417Encoder.class
file from the Java Class Encoder folder of the package
to the root directory of the computer's classpath. If assistance
is needed with the classpath, consult the Java documentation
or the company from where the Java virtual machine was acquired.

Integrate the Java Font Encoder Method

After the Encoder Class Library is installed, it may be called
from an application as in this example:

import java.io.*;
//import IDautomationPDFE.*; //Java 1.4 version
import com.idautomation.fontencoder.pdf417.*; //Java 11 version
class PDFTest {
 public static void main(String[] args) {
 String dataToEncode = "This is a test of the IDAutomation.com PDF417 Java
Encoder.";
 PDF417Encoder pdfe = new PDF417Encoder();
 System.out.println(pdfe.fontEncode(dataToEncode));
 }
}

The data string returned by the FontEncode method
will create a proper PDF417 symbol when displayed or printed
with the PDF417 font. To install the font on an operating system,
consult the operating system's documentation.

Configuration parameters and methods of the PDF417 for Java
font encoder class:

	fontEncode() - the main method that formats and
returns a string of data formatted to the PDF417 Font.

	PDFColumns - number of columns for PDF417 (the
default is 5).
	PDFECLevel - error correction level for PDF417
(the default is 2).
	PDFMode - the PDF417 mode can be NUMERIC, TEXT, or BINARY (the default is BINARY).
	truncated - if set to "true", truncated symbols will be created according to the ISO specification.

Using the COM DLL
Install the product by running the .exe file provided in the package.
Upon execution, it installs TrueType fonts, and implementation examples and registers the ActiveX DLL. To register the DLL manually, perform
the following:
	Copy the DLL to the \System directory.
	Register the DLL in the command prompt, change to the \system
directory, and type the command REGSVR32 "IDAutomationPDF417.dll".
	After the DLL is installed and registered, it may be accessed
by any application that can retrieve a text string or graphic object
from a COM DLL.

When using the COM DLL as a graphic encoder, refer to the steps in
the

ActiveX Control Manual. When using the COM DLL as a font encoder,
the FontEncode function is used to convert the data to encode into a string that when combined with the PDF417 font, will create a correct barcode. The following is Visual Basic 6 code that places
the converted data in the Output string:

Dim Output as String
Dim PDF417FontEncoder As PDF417Lib.PDF
Set PDF417FontEncoder = New PDF
PDF417FontEncoder.FontEncode DataToEncode, 0, 0, 0, 0, 0, 0, Output

A Visual Basic project example is included with the package. These files are placed in the destination directory upon installation.

COM and .NET DLL
Methods and Properties

There are a variety of methods and properties available in
the COM and .NET DLL PDF417 encoder components.

	TotalColumns: The number of data columns in the
PDF417 barcode will control the width of the barcode. The maximum number allowed is 30 but leave at 0 for the default.
	EcLevel: The level of Reed Solomon error correction in the symbol. More error correction creates a larger symbol that can withstand more damage. Leave at 0 for the default.
	PDFMode: Binary mode encodes bytes of data; text
mode encodes all characters on the US keyboard plus returns
and tabs. The default of 0 is binary mode; 1 is text mode
which only encodes ASCII 9, 10, 13, and 32 - 127 but takes
up less space.
	TotalRows: The minimum number of total rows can be set by this. Leaving this setting at the default of 0
is suggested.
	Truncated: A truncated PDF417 symbol is more area-efficient than a standard PDF417. By selecting this option,
the right-hand side of the PDF417 is removed or truncated.
This option should only be used in clean environments because
it is more susceptible to damage than standard PDF417 barcodes.
	ApplyTilde: If set to True" use the format
~ddd to specify the ASCII code of the character to be encoded. It is off by default. For example, if the text
~029AB is entered in the data field, it will be encoding GSAB
where GS is a
delimiter ASCII 29 character. This can be used in a single
string to encode GS and RS characters (GS = ASCII 29
and RS = ASCII 30). Other commonly used ASCII codes are ~009 for a tab and ~013 which is a return function.
These are useful when encoding multiple fields in a single
symbol.

COM DLL FontEncode Method

FontEncode (DataToEncode As String, EcLevel As Integer, TotalColumns
As Integer, TotalRows As Integer, Truncated As Integer, PDFMode
As Integer, ApplyTilde As Integer, Output as String)

Example: PDF417(InputString,"0","0","0","0","0","0",OutputString)
(Enter zeros for defaults in all integer fields)

.NET DLL FontEncoder Method

FontEncoder (DataToEncode As String, EcLevel As Integer,
TotalColumns As Integer, TotalRows As Integer, Truncated As
Boolean, PDFMode, ApplyTilde As Boolean)

Example: TextBox2.Text = NewBarcode.FontEncoder(DataToEncode,
0, 0, 0, False, PDF417Barcode.PDF417Modes.Text,
True)

View the

ASCII chart for additional details.

PDF417 C++ .H Header File
The C++ header file for PDF417 may be provided with the purchase of a Developer License of the Font and Encoder Suite.
The header file is an unobfuscated C++ source code that makes use of character vectors. It was compiled and tested with Visual Studio 2005 and 2008 and does not contain any OS-specific code. The PDF417FontEncoder
class may be used to return an encoded string that the PDF417 font can be applied to, to create PDF417 barcodes. This class also contains several properties
and enumerations that adjust the resulting symbol size and encoding method.

C++ Implementation example

#include <string>
#include <iostream>
#include "PDF417FontEncoder.h"

int main ()
{
 PDF417FontEncoder PDF;
 long ECL = 3;
 PDF.setApplyTilde(true);
 PDF.setErrorCorrectionLevel(ECL);
 PDF.PDF417Mode = PDF417FontEncoder::PDF417Modes::Binary;
 PDF.setDataToEncode("IDAutomation.com");
 printf(PDF.FontEncode().c_str());
}

MacroPDF417 Methods and Properties

Many of the encoders in this package support

MacroPDF, which allows additional data to be encoded by dividing
the data into multiple barcode symbols.

Java and .NET fontEncodeMacroPDF Method
String fontEncodeMacroPDF(String DataToEncode, int inEccLevel,
int inColumnSpecify, int inRowSpecify, boolean inTruncate, int
inMode, int inMacroSegIndex, int inMacroFileId, boolean inMacroLastIndex)

COM DLL and ActiveX Control FontEncodeMacroPDF
Method
FontEncodeMacroPDF(BSTR DataToEncode, int inEccLevel, int
inColumnSpecify, int inRowSpecify, int inTruncate, int inMode,
int inTilde, int inMacroSegIndex, int inMacroFileId, int MacroLastIndex,
BSTR *ReturnVal);

Support
Frequently Asked Questions

Can the font just be applied
to the data to create a PDF417 symbol?

Implementing the PDF417 font requires the use of both the fonts and the encoders. To generate an accurate PDF417 barcode from
a font, the data you wish to turn into a barcode must first
be encoded into a text string that will create a readable PDF417
barcode once the appropriate font is applied to it. The purpose
of the encoder is to convert the data to be encoded into proper
bar and space patterns formatted to the PDF417 barcode font.

Using an encoder is necessary due to the complexity of the
symbology and the required Reed Solomon error correction. Attempts
to manually encode this data would be extremely complicated,
and the font encoders are available to make this procedure much
faster, easier, and error-free.

What are the benefits of printing
PDF417 as a font?
PDF417 fonts are more flexible than other components such
as an ActiveX control or .NET Forms Control because the fonts
can be combined with these ActiveX, .NET, Java, and other encoders
depending on which will work best in a given environment.

Can extended characters such
as Â© Â® Ã« Ã¶ be encoded and scanned?

Yes, it is possible to scan and encode extended characters
in a PDF417 barcode, provided the following steps are taken:

	Encode the data using BASE256. This option encodes
ASCII 1 to 255 of the ASCII character set. When encoding over 1024 characters of data, ASCII 127-160 must also be
encoded in the format ~ddd, with ApplyTilde set to true.
	Scan the PDF417 barcode via the serial interface
option (data bits have to be 8N) on the scanner. Normally,
keyboard wedge and USB scanners do not support extended
characters above ASCII 128, and can only scan characters
that are on the keyboard. Contact the scanner vendor for
more information on how to enable extended character recognition,
as some of the scanner's internal settings might need
to be modified.

Popular Forum Post Resolutions:
	PDF417 Encoding Multiple Fields in Crystal Reports
	
		Data to Encode Limit for PDF417
	
		How do PDF417 Columns work?
	
		Encode PDF417 Barcodes using VBA in Excel
	
		PDF417 Error Correction and X/Y Dimension
	Access has Stopped Working Error when using the ActiveX Control
	White Lines Appear in a Stacked Barcode Symbol
	Mail Merge Barcodes Look Incorrect
	Additional support may be provided by reviewing resolved forum threads or contacting technical support.

Common Problems and Solutions:

Line Spacing Issues: Too Much Space Between
Lines
Some implementations of PostScript fonts can cause a small space to appear between rows in the PDF417 symbol. The only way to resolve this issue is to confirm that the print application is not adding additional line feeds. Or, in the case of PCL
fonts, change the vertical motion index as indicated below.
This space will not cause problems with scanners and the barcode
will still be readable.
When using 12 or 14-point PCL fonts, an adjustment to the vertical motion index is not usually necessary. However, if other sizes are used, an adjustment may be needed to close the gap between rows. To set the vertical motion index, issue the command before printing with the PDF417 font. The code for the
Vertical Motion Index Command is escape "<Ec>"
+ "&" + lowercase L "l" + Number Index
+ Capital "C". Use the chart below to find the command for the specific font point size. The number may be
adjusted as necessary for the printer.
	
PCL
Font Point Sizes	
Vertical
Motion Index Commands
	10	<Ec> &l6.5C
	8	<Ec> &l5.2C
	6	<Ec> &l3.9C

In the example above, the <Ec> represents the
escape character for the software. In DOS Edit, Ec is
represented by holding down the CTRL key and pressing the letter
P, release both keys and then press the ESC key.
X-Axis Issues or Left Margin Alignment Issues
This issue may exist if there is an attempt to move the barcode to the right on the X-axis using a programming language, such as Visual Basic. When using the printer.currentX specification to set the X-axis, only the first line of the barcode would print in the new position and the remaining lines would print at zero, all the way to the left. This is because the printer.currentX
specification is reset every time a return is performed. A return must be performed to print the font on the new line.
The best solution to this problem would be to find a command
that could move the left margin so that returns will move the
insertion point to the correct position. Since Visual Basic
does not have a command such as this, a small piece of code
must be written to set the currentX for each line.
	Declare and initialize a variable with the desired X
position. Example:
my_x = printer.currentX

	Replace the Printer.Print OutputString command
with something similar to the following:
For i = 1 To Len(Output)
 out1 = out1 & Mid(Output, i, 1)
 If Mid(Output, i, 1) = Chr(10) Then
 out1 = Replace(out1, Chr(10), "")
 out1 = Replace(out1, Chr(13), "")
 Printer.CurrentX = my_x
 Printer.Print out1
 out1 = ""
 End If
Next i

PDF417 Font Specifications

	
Character Sets	GLI0 encodes ASCII
0 to 255 of the ASCII character set.
	
Data Compaction
Modes	Text Compaction
with all four sub-modes supports text and numbers.
Byte
Compaction mode supports numbers, text, and binary data.
	
Error Correction
Levels	Selectable from 1
to 8

	
Current Font Names	
Notes
	IDAutomation 2DIDAutomation 2D N5
IDAutomation 2D XLS
	Beginning with
the 2015 release, this product was updated to use the

Universal 2D Font, which is compatible with all encoders of this product. The

Universal 2D Font enables PDF417 and matrix barcode types such as
Aztec,
DataMatrix,
and
QR Code to be created from the same font.Several 2D fonts are provided in the package to support N dimensions of 3 and 5. For specifics, refer
to the
Universal 2D Font Specifications.

The 2D XLS font is designed to be used in Excel only.

	
Fonts Prior to 2015	
Notes
	The PDF417 fonts
listed below are available within the "Legacy Fonts" folder of the product
zip file in case they are needed.
	IDAutomationPDF417n3	The
standard PDF417 font with an X-to-Y ratio of 1:3 which is recommended by national and international standards. Y dimension = 3X
	IDAutomationPDF417n4	A taller,
thinner PDF417 font for use with lower-quality readers and special applications. It has an X dimension of .75 times the X dimension of PDF417n3. It has an X-to-Y ratio of 1:4. It may be necessary
to increase the font size after switching to this ratio.

	IDAutomationPDF417n5	A taller,
thinner PDF417 font is designed to be used for

FedEx label specifications and other applications that require an X-to-Y ratio of 5. The X dimension of this font is .010"
or 10 MILS when printed at 11 points.
	IDAutomationPDF417n2	A shorter
version of the PDF417 font for high-quality imagers and scanners.
It has an X dimension of 1.5 times the X dimension of PDF417n3
and an X-to-Y ratio of 1:2. This font may be used to reduce the symbol height if a high-quality scanner is being used in a clean environment. It may be necessary to decrease the font size after switching to this ratio.Note: Most scanners
cannot dependably read this font.

Related Information

	
Font installation procedures
	Support for all graphic encoders
is provided in the manual for that product.
	Additional support may be provided by
reviewing
resolved forum threads or
contacting
technical support.

INFORMATION

	

About Us
	

Support Forum
	

Privacy Policy
	

License Agreement

MY ACCOUNT

	

 Login to Account

	My Orders
	Contact Us
	Return Policy

	

	

Over 70% of Fortune 100 companies
use IDAutomation's products to automate their businesses.

 IDAutomation.com, Inc. | 550 North Reo Street, Suite 300 | Tampa, Florida 33609
Â©Copyright 2022 IDAutomation.com, All Rights Reserved. Legal Notices.

